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Abstract - A new technique is proposed to analyze 
microwave circuits on uniplanar compact photonic bandgap 
(UC-PBG) structures. This structure is a two-dimensional 
square lattice with each element consisting of a metal pad and 
four connecting branches. The UC-PBG structure can be 
used in the development of high-performance and compact 
circuit components for microwave and millimeter-wave 
frequencies. Usually, accurate analyses of PBG structures are 
performed through complex techniques, like FDTD. Lately, a 
growing interest was observed in the use of 
neumcomputational techniques to study the properties of 
electromagnetic devices and circuits. The main goal of this 
work is to develop a new and efficient technique to analyze 
microwave circuits with UC-PBG based on neural networks. 
The proposed neural network analysis for UC-PBG 
structures gave results in excellent agreement with measured 
results available in the literature. Besides, this technique 
provided a very good generalization, allowing the comparison 
with a set of measured results that were not used in the 
training process. 

I. INTRODUCTION 

A PBG structure is a periodic lattice that exhibits a 
frequency stopband. Therefore, several works have been 
developed to study the properties of PBG materials for 
optical band applications. Recently, the use of PBG 
structures was extended to the development of microwave 
and millimeter wave circuits [ 11.[6]. 

Lately, a great interest was observed in the study of the 
uniplanar compact photonic bandgap (UC-PBG) [6]. This 
structure presents several advantages, including low-loss, 
broad stopband, and compact size. 

There are several microwave applications for UC-PBG 
structures [5],[6]. For instance, the passband of this 
structure has been used in the development of slow-wave 
medium for integrated circuits with reduced dimension [6]. 
Also, this structure can be used as a magnetic surface at the 
stopband frequency, to be used in the development of 
planar reflectors. 

UC-PBG stmctures are also used in rectangular 
waveguides [6]. These devices are used for applications 
related to the quasi-optical power coupling. 

An accurate analysis of PBG circuits and devices usually 
requires complex computational techniques, with heavy 
computational efforts, such as integral equation method [3] 
and Finite-Difference Time-Domain (FDTD) [6]. 

Recently, neurocomputational techniques were presented 
as powerful tools to be used in several applications, 
including those in microwave engineering [7]. The main 
characteristics of neural network techniques are generality, 
adaptability, and generalization ability. Because of that, 
artificial neural networks (ANNs) techniques are able to 
properly handle electromagnetic problems such as the 
analyses of planar transmission lines, waveguide filters, 
CPW lines, microstrip antennas, PET transistors, and 
planar spiral inductors [3]-[B]. 

In this work, the characteristics of microstrip and ‘IBM 
waveguide photonic bandgap (UC-PBG) stmctures ax 
investigated. A new neural network paradigm based on the 
sample function, SFNN, was proposed. The training 
process was accomplished by using a dataset of measured 
results available in the literature. It was observed that the 
outputs of the proposed SFNN technique showed a good 
agreement with the corresponding measured results for the 
considered devices. 

Besides, the neurocomputational technique showed 
generalization ability, providing good results for 
frequencies and structural parameters not considered in the 
training process. 

II. UC-PBG STRUCTURE CHARACTERISTICS 

The UC-PBG stmctwe considered in this work is shown 
in Fig. I. This structure consists of a periodic two- 
dimensional lattice printed on a dielectric substrate. The 
UC-PBG unit cell consists of square pads and narrow lines 
with insets. 
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Fig. 1. (a) UC-PBG unit cell. (b) UC-PBG periodic lattice. 

The structure shown in Fig, 1 works like a LC 
distributed circuit with a particular resonant frequency. 
While the gaps between adjacent unit cells provide the 
capacitive coupling, the conducting lines provide the 
inductive coupling, which is increased by insets. At the 
resonant frequency, corresponding to the stopband 
frequency of the LC circuit, the periodic load behaves lie 
an open circuit, or an equivalent magnetic surface [8]. 

The UC-PBG structure is designed according to the 
resonant frequency, which depends on the introduction of 
magnetic walls on the periodic element boundary with side 
dimension a (Fig.1). 

III. PBG MICROSTRIP LINE DESIGN 

Fig. 2 shows a microstrip line on a UC-PBG ground 
plane. 

The UC-PBG section is 720 mil long, which corresponds 
to six periods. The substrate used is RT/Duroid 6010 with 
a dielectric constant of 10.2 and dielectric thickness of 25 
mil. The microstrip line width is 24 mil, corresponding to a 
50-n microstrip line with a solid ground plane. A short 
length of solid ground plane was included at each end of 
the microstrip line to facilitate the connection with the 
SMA connectors. 

(4 

Fig. 2. A microstrip line on a UC-PBG ground plane. (a) Top 
view. (b) Bottom view. 

IV. UC-PBG WAVEGUIDE DESIGN 

Fig. 3 shows a TEM rectangular waveguide with two 
UC-PBG sidewalls [Xl. 

UC-PB 

wal 

Fig. 3. UC-PBG rectangular waveguide. 

Fig. 4. Cross sectional view of the UC-PBG waveguide. 

Fig. 4 shows the front view of the waveguide loaded 
with two UC-PBG structures located as sidewalls. The 
outer and inner widths are 22.86 and 21.59 mm, 
respectively. These UC-PBG structures were printed on a 
Duroid 6010 substrate with dielectric constant equal to 
10.2 and dielectric thickness equal to 0.635 mm. The 
period of the lattice is 4.572 mm, corresponding to a 
resonant frequency of 10 GHz. 

V. N!XJROCOMPUTACIONAL TECHNIQUE 

A. Introduction 

Recently, it was observed a. great interest in the 
application of artificial neural networks (ANNs) in the 
analysis, design, and optimization of microwave and 
millimeter waves circuits and devices [3]-[8]. 

The methodology of the neurccomputacional technique 
consists of the presentation to the neural network of a 

dataset of training examples, {x, ,f( X, jj Then, the 
learning process is initialized by correcting the error 

between the network output, F( w..x, ) and the desired 

output, f(x), to implement the supervised training 
algorithms. Finally, the validation of the neural network is 
accomplished by using a different dataset of examples, 
{ X, ,f( X, II This includes a test of the generalization 
ability of the ANN that is performed by using a new set of 
input values. 
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The neural networks commonly used in applications in 
microwaves are: MLP, RBF, and wavelet networks. 
Nevertheless, in some particular microwave applications 
these conventional techniques do not offer good outputs. 

B. Sample Function Neural Network 

This new paradigm proposed in [3] is defined as Sample 
Function Neural Network (SFNN) and is based on the 
properties of the sine function in signal processing theory, 
RBF neural network configuration, and Shanon and 
Littlewood-Palley wavelets. The sample activation 
function is show below. 

sample(x)=sinc(xlx)=sin(x)ix (1) 

The next step was accomplished by modifying the 
argument of the activation function. Then, the proposed 
activation function was rewritten as: 

where t accounts for translation, and o for dilation. 
The basic configuration of the SFNN model used in 

modeling UC-PBG microwave circuits is shown in Fig. 5. 

Fig. 5. Basic configuration of the SFNN neural network. 

The direct computation of the SFNN neural networks is 
defined by the following expressions: 

net,=o*llx-r,112=o,(x-t,iT.(X-tth) (3) 

yh = pi x,t, ) = sample(net,) (4) 

(5) 

where net,, is the h” internal activation potential, yh is 

the h” hidden neuron output, Y* is the h” weight between 

h’ hidden neuron and output layer, F (WJ) is the neural 

model output, and H is the number of hidden units. 
In the supervised training process of the SFNN 

technique, the free parameters of the SFNN 
model,w=[V,n, t] , are improved to diminishes the 
following quadratic objective function: 

E(w,x)=;r’ =;lf(x,-F(m,x)~ (7) 

This was accomplished by using the gradient method: 

Aw = +‘a? (8) 
where q is the step-size. 

VI. NUMERICAL RESULTS 

In the analysis of the microstrip line on a UC-PBG the 
input variable is the operating frequency range from 1 to 
20 GHz. The outputs of the SFNN model are: return loss, 
S,,, and insertion loss, Szl. The training set consisted of 
100 examples, while the validation set of 37 examples, for 
a hidden layer with 23 neurons. 

Fig. 6 shows the validation of the SFNN model for a 
microstrip line on a UC-PBG ground plane [6]. Note that 
there is an excellent agreement between the insertion loss 
values and the corresponding SFNN outputs, showing the 
accuracy of the performed neurocomputation analysis. In 
addition, the SFNN model outputs showed better 
approxtmation than the FDTD results. 

In the analysis of the UC-PBG waveguide shown in Fig. 
8, we used a basic architecture for the SFNN model, with 
three layers: the input layer, or the operating frequency, 
given in GHz, the hidden layer with 50 neurons, dnd the 
output layer, or the normalized phase velocity (VP/C). 

In the training process, 30 examples were used, 
corresponding to measured results presented in [41. A 
learning rate of 0.1 was used and after 1000 training 
epochs, the final average error, SSE, was lower than 
l.OxlO~. 

The results for the normalized phase velocity, v&, as 
function of frequency, are shown in Fig. 7. To validate the 
proposed technique an additional set of measured results 
was presented in Fig. 8. A good agreement was observed 
between this dataset and the answers of the 
neurocomputational technique. 

C. Electric Field Distribution in the UC-PBG Waveguide 

In the analysis of the electric field distribution in the 
UC-PBG waveguide, two input layers were assumed: the 
operating frequency and the position of the electric field 
measurement. 



Fig. 6. Insertion loss frequency dependence for a microstrip line 
on a UC-PBG ground plane. 

A hidden layer with 30 neurons was considered. The 
output layer was the electric field magnitude. A hidden 
layer with 30 neurons was considered and the output layer 
was the electric field magnitude. In the learning process, it 
was used a set of 100 examples, or measured results 
obtained in [8]. After 2000 epochs of teaching, at a 
learning rate of 0.01, the SFNN network got a final enw 
(SEE) equal to 0.08~10~. 

VII. CONCLUSION 

A new, efficient, and accurate SFNN model was used in 
the analysis of UC-PBG microstrip lies. It was also used 
to investigate the frequency dependence of the normalized 
phase velocity and the electric field distribution in a PBG 
rectangular waveguide. 

The response of the SFNN network for a passband PBG 
waveguide is show in Fig. 8. The center position in the 
PBG waveguide is at x = 0, and the magnetic wall at x = 1. 

It was observed that the interpolation results of the 
proposed SFNN model for four different positions in the 
UC-PBG waveguide show excellent agreement with a set 
of 30 measured values obtained from [8] and used in the 
validation step. 

The SFNN model outputs showed good agreement with 
the correspondiig measured results available in the 
literature, as well as generalization ability. 
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