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Abstract — A new technique is proposed to analyze
microwave circuits on uniplanar compact photonic bandgap
(UC-PBG) structures. This structure is a two-dimensional
square lattice with each element consisting of a metal pad and
four connecting branches. The UC-PBG structure can be
used in the development of high-performance and compact
circuit components for microwave and millimeter-wave
frequencies. Usually, accurate analyses of PBG structures are
performed through complex techniques, like FDTD. Lately, a
growing interest was observed in the wuse of
neurocomputational techniques te study the properties of
electromagnetic devices and circuits. The main goal of this
work is to develop a new and efficient technigue to analyze
microwave circuits with UC-PBG based on neural networks.
The proposed neural network analysis for UC-PBG
structures gave results in excellent agreement with measured
results available in the literature. Besides, this technique
provided a very good generalization, allowing the comparison
with a set of measured results that were not used in the
training process.

L. INTRODUCTION

A PBG structure is a periodic lattice that exhibits a
frequency stopband. Therefore, several works have been
developed to study the properties of PBG materials for
optical band applications. Recently, the use of PBG
structures was extended to the development of microwave
and millimeter wave circuits [1]-[6].

Laiely, a great interest was observed in the study of the
uniplanar compact photonic bandgap (UC-PBG) [6]. This
structure presents several advantages, including low-loss,
broad stopband, and compact size.

There are several microwave applications for UC-PBG
structures [5],[6]. For instance, the passband of this
structure has been used in the development of slow-wave
medium for integrated circuits with reduced dimension [6].
Also, this structure can be used as a magnetic surface at the
stopband frequency, to be used in the development of
planar reflectors.
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UC-PBG structures are also used in rectangular
waveguides [6). These devices are used for applications
related to the quasi-optical power coupling.

An accurate analysis of PBG circuits and devices usually
requires complex computational techniques, with heavy
computational efforts, such as integral equation method [3]
and Finite-Difference Time-Domain (FDTD} (6].

Recently, neurocomputational techniques were presented
as powerful tools to be used in several applications,
including those in microwave engineering {7]. The main
characteristics of neural network techniques are generality,
adaptability, and generalization ability. Because of that,
artificial neural networks (ANNS) techniques are able to
properly handle electromagnetic problems such as the
analyses of planar transmission lines, waveguide filters,
CPW lines, microstrip antennas, FET transistors, and
planar spiral inductors [3]-{8].

In this work, the characteristics of microstrip and TEM
waveguide photonic bandgap (UC-PBG) structures are
investigated. A new neural network paradigm based on the
sample function, SFNN, was proposed. The training
process was accomplished by using a dataset of measured
results available in the literature. It was observed that the
outputs of the proposed SENN technique showed a good
agreement with the corresponding measured results for the
considered devices.

Besides, the neurocomputational technique showed
generalization  ability, providing good results for
frequencies and structural parameters not considered in the
training process.

II. UC-PBG STRUCTURE CHARACTERISTICS

The UC-PBG structure considered in this work is shown
in Fig. 1. This structure consists of a periodic two-
dimensional lattice printed on a dielectric substrate. The
UC-PBG unit cell consists of square pads and narrow lines
with insets.
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Fig. 1. (a) UC-PBG umit cell. (b) UC-PBG periodic lattice.

The structure shown i Fig. 1 works like a LC
distributed circuit with a particular resonant frequency.
While the gaps between adjacent unit cells provide the
capacitive coupling, the conducting lines provide the
inductive coupling, which is increased by insets, At the
resonant frequency, corresponding to the stopband
frequency of the LC circuit, the periodic load behaves like
an open circuit, or an equivalent magnetic surface [8).

The UC-PBG structure is designed according to the
resonant frequency, which depends on the introduction of
magnetic walls on the periodic element boundary with side
dimension a (Fig.1).

III. PBG MICROSTRIP LINE DESIGN

Fig. 2 shows a microstrip line on a UC-PBG ground
plane.

The UC-PBG section is 720 mil long, which corresponds
to six periods. The substrate used is RT/Duroid 6010 with
a dielectric constant of 10.2 and dielectric thickness of 25
mil. The microstrip line width is 24 mil, corresponding to a
50- microstrip line with a solid ground plane. A short
length of solid ground plane was included at each end of
the microstrip line to facilitate the connection with the
SMA connectors.

Fig. 2. A microstrip line on a UC-PBG ground plane. (a) Top
view. (b) Bottom view.

IV. UC.PBG WAVEGUIDE DESIGN

Fig. 3 shows a TEM rectangular waveguide with two
UC-PBG sidewalls [8].
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Fig. 3. UC-PBG rectangular waveguide.

Fig. 4. Cross sectional view of the UC-PBG waveguide.

Fig. 4 shows the front view of the waveguide loaded
with two UC-PBG structures located as sidewalls. The
cuter and inner widths are 2286 and 21.59 mm,
respectively. These UC-PBG structures were printed on a
Duroid 6010 substrate with dielectric constant equal to
10.2 and dielectric thickness equal to 0.635 mm. The
period of the lattice is 4.572 mm, corresponding to a
resonant frequency of 10 GHz.

V. NEUROCOMPUTACIONAL TECHNIQUE

A. Introduction

Recently, it was observed a great interest in the
application of artificial neural networks (ANNs) in the
analysis, design, and optimization of microwave and
millimeter waves circuits and devices [3]-[8].

The methodology of the neurocomputacional technique
consists of the presentation to the neural network of a
dataset of training examples, { x,,f( x, }}. Then, the
learning process is initialized by correcting the error

between the network output, F{ w,x, ) and the desired

output, f{ X}, to implement the supervised training
algorithms, Finally, the validation of the neural network is
accomplished by using a different dataset of examples,
{x,,f(x,)}. This includes a test of the generalization

ability of the ANN that is performed by using a new set of
input values.
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The neural networks commonly used in applications in
microwaves are: MLP, RBF, and wavelet networks.
Nevertheless, in some particular microwave applications
these conventional techniques do not offer good outputs.

B. Sample Function Neural Network

This new paradigm proposed in {3] is defined as Sample
Function Neural Network (SFNN) and is based on the
properties of the sinc function in signal processing theory,
RBF neural network configuration, and Shanon and
Littlewood-Palley wavelets. The sample activation
function is shown below,

sample( x )= sinc( x/ x)=sin{ x )/ x

(n

The next step was accomplished by modifying the
argument of the activation function. Then, the proposed
activation function was rewritten as:

sen( crz||x —t"z ) )
o’fx~1
where t accounts for translation, and ¢ for dilation.

The basic configuration of the SFNN smodel used in
modeling UC-PBG microwave circuits is shown in Fig. 5.

of x,t )= sample( az||x —-t"z )=

Fig. 5. Basic configuration of the SENN neural network.

The direct computation of the SFNN neural networks is
defined by the following expressions:

nety =oyx-t,[ =o(x-8, ) (x-t,) @
Ya =@ x,8, )= samplelnet, ) (4
(3)

H
F(w,x)= thy,, +v
h=1
where net, is the A" internal activation potential, y, is

the A" hidden neuron output , v, is the At weight between
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A™ hidden neuron and output layer, F(w,x) is the neural

model output, and H is the number of hidden units.

In the supervised training process of the SFNN
technique, the free parameters of the SFNN
model,w={V,o,f], are improved to diminishes the

following quadratic objective function:

1 I
Ewx)=2e ==lfx)-Fowx)f
This was accomplished by using the gradient method:
Aw =-nVE (8)

where 77 is the step-size.

V1. NUMERICAL RESULTS

In the analysis of the microstrip line on a UC-PBG the
input variable is the operating frequency range from 1 to
20 GHz. The outputs of the SFNN model are: return loss,
Si1, and insertion loss, Sz;. The training set consisted of
100 examples, while the validation set of 37 examples, for
a hidden layer with 23 neurons.

Fig. 6 shows the validation of the SFNN model for a
microstrip line on a UC-PBG ground plane [6]. Note that
there is an excellent agreement between the insertion loss
values and the corresponding SFNN outputs, showing the
accuracy of the performed neurocomputation analysis. In
addition, the SFNN model outputs showed better
approximation than the FDTD results.

In the analysis of the UC-PBG waveguide shown in IFg.
8, we used a basic architecture for the SFNN model, with
three layers: the input layer, or the operating frequency,
given in GHz, the hidden layer with 50 neurons, dnd the
output layer, or the normalized phase velocity (v,/c).

In the training process, 30 examples were used,
corresponding to measured results presented in [4]. A
learning rate of 0.1 was used and after 1000 training
epochs, the final average error, SSE, was lower than
1.0x10*.

The results for the normalized phase velocity, vy/c, as
function of frequency, are shown in Fig. 7. To validate the
proposed technique an additional set of measured results
was presented in Fig. 8. A good agreement was observed
between this dataset and the answers of the
neurocomputational technique.

C. Electric Field Distribution in the UC-PBG Waveguide

In the analysis of the electric field distribution in the
UC-PBG waveguide, two input layers were assumed: the
operating frequency and the position of the electric field
measurement.
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Fig. 6. Insertion loss frequency dependence for a microstrip line
on a UC-PBG ground plane.

A hidden layer with 30 neurons was considered. The
output layer was the electric field magnitude. A hidden
layer with 30 neurons was considered and the output layer
was the electric field magnitude. In the learning process, it
was used a set of 100 examples, or measured results
obtained in [8]. After 2000 epochs of teaching, at a
learning rate of 0.01, the SFNN network got a final error
(SEE) equal to 0.08x10™,

The response of the SFNN network for a passband PBG
waveguide is shown in Fig. 8. The center position in the
PBG waveguide is at x = 0, and the magnetic wall at x = 1.

It was observed that the interpolation results of the
proposed SFNN model for four different positions in the
UC-PBG waveguide show excellent agreement with a set
of 30 measured values obtained from [8] and used in the
validation step.
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Fig. 7. Normalized phase velocity versus frequency for UC-PBG
waveguide.
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Fig. 8. Validation of the SFNN model for the UC-PBG

waveguide and generalization for a new position.

VII. CONCLUSION

A new, efficient, and accurate SFNN model was used in
the analysis of UC-PBG microstrip lines. It was also used
to investigate the frequency dependence of the normalized
phase velocity and the electric field distribution in a PBG
rectangular waveguide. '

The SFNN madel gutputs showed good agreement with
the corresponding measured results available in the
literature, as well as generalization ability.
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